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Even fermionic stochastic flows are shown to be closely related to the mathe- 
matics of supersymmetry. 

1. INTRODUCTION 

The interface between differential geometry and stochastic calculus has 
been a fruitful source of  mathematical inspiration. Recently attempts have 
been made to study this interface in a quantum or noncommutative 
context, both of  the geometry and the stochastic calculus, based on the 
notion of  a quantum stochastic flow (Hudson, 1990), which describes a 
stochastic flow on a noncommutative manifold in which the noise terms 
involve a noncommutative quantum stochastic calculus. Hitherto most 
attention has been devoted to the case where the latter is a bosonic theory; 
indeed it might be thought, in view of  the unification of  boson and fermion 
theories in Fock space (Hudson and Parthasarathy, 1986) that there was no 
distinctive fermionic alternative. In this paper we show that, despite the 
unification, the fermionic theory has a character all o f  its own, and is 
closely related to some recent theories of  supersymmetry (Jaffe et al., 1989). 

The plan of  the paper is as follows. In Section 2 we review quantum 
stochastic calculus in Fock space, including both boson and fermionic 
versions. In Section 3 we consider unitary stochastic evolutions driven by 
fermionic noise; this section is also largely of  a review character. In Section 
4 we consider fermionic flows and their structure maps. In contrast to a 
previous work (Hudson and Shepperson, 1992), we consider only flows 
comprising even Z2-graded algebra homomorphisms; this simplification 
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allows for a much more complete and satisfactory theory. Unitary pertur- 
bations are considered in Section 5. Finally, in Section 6 we compare the 
theory of fermion flows with the formalism of supersymmetry developed in 
Jaffe et al. (1989) (and in references therein). 

In what follows, if h i and h 2 a re  Hilbert spaces, hi | h2 denotes the 
Hilbert space completion of the algebraic tensor product, which is denoted 
by | Operators S and T defined on a common domain 8 are mutually 
adjoint if (~bl, S~2> = <T~I, ~b2> for arbitrary ~l and ~bEer The Hilbert 
space inner product (-, .> is linear in the second variable. 

2. QUANTUM STOCHASTIC CALCULUS 
(Hudson and Parthasarathy, 1984; Parthasarathy, 1992) 

The boson Fock space F(h) over a Hilbert space h is conveniently 
characterized (up to isomorphism exchanging exponential vectors) as the 
Hilbert space generated by the exponential vectors t~(f), f ~h, which satisfy 

( ~ ( f ) ,  ~(g))  = exp(f, g )  

In what follows h =L2(R+).  Corresponding to the natural direct sum 
decomposition 

h = L2(•+) = L2[0, t] ~L2(t ,  00) = h, Oh '  

we make the identification 

F(h) = F(h,) | r(h t) 

in which exponential vectors are product vectors; in particular, the dense 
exponential domain ~ spanned by the exponential vectors factorizes as an 
algebraic tensor product: 

= ~ , |  (2.1) 

The creation, preservation, and annihilation processes are the families of 
operators defined on the domain o ~ by 

~(t)~(f) = d ~( f +  e~Eo,tl)Jr = o A 

A(t)ql(f) = d ~(e~Z~o,af )[~ = o 

s A(t)O(f) = f ( s )  ds O ( f )  

A(t) is symmetric and A(t), At(t) mutually adjoint on g. 



Fermion Flows and Supersymmetry 2415 

Quantum stochastic calculus renders meaningful operator-valued 
stochastic integral processes of the form 

M(t) = (E dA + F dA t + G dA + H ds) 

Here the integrands E, F, G, H are processes of operators defined on N, 
together with their adjoints, which are adapted in the sense that, corre- 
sponding to (2.1), 

E(t) = Et | 1', F(t) = F, @_~_lt, etc. 

and which satisfy certain local square-integrability requirements. Then M is 
itself an adapted process whose adjoint process on N is given by 

Mr(t) = (Et dA + Gt dAt + F dA + Ht ds) (2.2) 

The principal result of the theory is the quantum It~ formula for integration 
by parts: 

M1 (t)M2 (t) 

= {(E, M 2 + M ~ E 2 + E ,  E 2 ) d A + ( F ~ M 2 + M I F 2 + e ~ F 2 ) d A  t 

+ (GIM2 + M, G2 + G, M2) dA + (HzM2 + M, H2 + G, F2) ds} 

Here all products of unbounded operators are understood in the weak 
sense: 

( i f ( f ) ) . ,  M~(t)M2(t)if(g) )= , (M~ (t)if(f),  M2(t)i(g) ), etc. 

The quantum It6 formula is conveniently expressed in differential form 
as  

d(M~M2) = dMl " 3/12 + MI �9 dM2 + dM1 �9 dM2 (2.3) 

with the convention that adapted processes commute with the basic differ- 
entials: 

E dA = dA E (2.4a) 

E d A = d A  E, E d A t = d A t  E (2.4b) 

E ds = ds E (2.4c) 

and the correction term dM~" dM2 is evaluated from the multiplication 
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table for the basic differentials 

dA 
dA* 
dA 
ds 

d A dA t dA ds 

dA dA* 0 0 
0 0 0 0 

dA ds 0 0 
0 0 0 0 

(2.5) 

so that 

dB = F dA, dB* = F dA* 

where F = ( - 1 )  A is the parity process, and, since 1,2 ----- 1, 

dA =1, dB, dA* = F dB* 

we have a corresponding construction for fermion creation and annihila- 
tion operators (Hudson and Parthasarathy, 1986): 

b(f)  = f f  dB = f f F  dA, bt ( f )  = ; f  dB* = f f F  dA* 

The theory makes contact with classical It6 calculus through the Wiener- 
Segal isomorphism 

F(h) = L 2 (Wiener measure) 

under which A t + A becomes multiplication by Brownian motion, and 
multiplications by classically adapted processes are adapted processes in the 
quantum sense, stochastic integrals of which against dA* + dA are multipli- 
cations by the It6 integral of the original classical process. 

The usual boson creation and annihilation operators can be expressed 
as stochastic integrals (Cockroft and Hudson, 1977): 

a ( f ) =  f f  dA, a*(f) = f f  dA* 

in the sense that, for each teN+ and f eLZ(R+) ,  

;0 a(fZto,tl) = dA, a*(f)~[o,tl) = fdA*. 

Introducing the fermion creation and annihilation process 

;o fo B(t)  = ( -  1) A dA, b*(t) = ( -  1) A dB 
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Indeed these operators are bounded and satisfy the canonical anticommu- 
tation relations (CAR) 

[b(f), b(g)]+ = [bt(f), bt(g)]+ = 0, [b(f), bt(g)]+ = (f ,  g ) l  

and constitute the Fock representation of the CAR insofar as the vacuum 
~9(0) is annihilated by the b ( f )  and is cyclic for the b t ( f ) .  Fermionic 
theories of stochastic integration (Barnett et aL, 1982) can thus be reduced 
to the boson theory. In particular there is a fermionic It6 formula 
analogous to (2.3) in which the basic It6 multiplication table is identical to 
(2.5): 

dA 
dB t 

dB 
ds 

dA dB t dB ds 

dA dB ~ 0 0 
0 0 0 0 

dB ds 0 0 
0 0 0 0 

(2.6) 

This is supplemented by the rules (2.4a) and (2.4c), but, instead of (2.4b) 
we find 

EdB =dB E ~, E d B t = d B t  E ~ (2.7) 

where y denotes conjugation by the self-adjoint unitary parity process: 

E ~ = FEF = F E F - '  

3. FERMIONIC STOCHASTIC EVOLUTIONS 

Let there be given a Hilbert space ~r called the initial space, which is 
the carrier Hilbert space for describing some physical system. The boson 
stochastic calculus is easily extended to integrands which are adapted 
operator valued processes on the domain ~ef0~8 in ~o | F(h), by identify- 
ing the basic processes A t, A, and A with their ampliations 1~o | t, 
l~o.@@A, l~o|  To make a similar extension in the fermion case, we 
assume J/f| is equipped with a self-adjoint unitary initial parity operator F0 
and decompose ~o into its even and odd subspaces |174177 which are 
eigenspaces of F| corresponding to eigenvatues + 1, respectively. We iden- 
tify fermion creation and annihilation processes with their Z2-graded 
ampliations to ~o | defined by 

l@~B(t)u| = Tu| ( U ~ o ,  ~ 8 )  

where the sign is + or - according as u (assumed of definite parity) 
belongs to ~0+ or o~0.  
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We may consider as quantum stochastic generalizations of Schr6- 
dinger evolutions unitary stochastic evolutions driven by fermionic stochas- 
tic differential equations 

d U = U ( l l d A + d B * 1 2 + 1 3 d B + l g d s ) ,  U 0 = l  (3.1) 

Here the l~ are operators in ~q~0 identified with their Z2-graded ampliations 
to ~o | F(h). Necessary conditions for unitarity, assuming boundedness, 
are found, by equating to zero the stochastic differentials of U* U and U U  ~, 
to be 

I* + l 1 + l~ l 1 = ll + l* + l l l* = 0 

7 * l* + 12 + l]*12 = 12 + l* + ll l3 = 0 

12 ll = 13 + l* + 13l~* = 0 l* + 13 + * ~' 

rg + 14 + l'~12 = 14 + t~ + 13l~ = o 

where y is the parity automorphism obtained by conjugating by Fo. 
Equivalently, (ll, 12, 13, 14) = (w - 1, l, - l * w  ~, ih - �89 where w is uni- 
tary, h self-adjoint, and l arbitrary in B(a~0). This may be compared 
with the corresponding condition for the boson case (Hudson and 
Parthasarathy, 1986). If U is required to be even, then w and h must be 
even and I odd and the boson and fermion conditions for unitarity become 
formally identical. 

It was proved in Applebaum and Hudson (1984) in the case when 
there is no preservation term, using a different formulation of fermionic 
stochastic calculus, in Hudson and Parthasarathy (1986) in the case when 
the initial grading is trivial, Fo = l, and in Applebaum (1987) in the general 
case, that these conditions are sufficient for the existence of a unique 
unitary process satisfying (3.l). Recently there has been considerable 
progress in the boson case in the theory of stochastic evolutions driven by 
unbounded driving coefficients (Applebaum, 1991; Mohari, 1991; Fagnola, 
1990; Vincent-Smith, 1991). 

4. F E R M I O N  F L O W S  

By analogy with the boson theory (Hudson, 1990), a f e rm i o n  f l o w  is a 
generalization of a Heisenberg evolution incorporating fermion noise 
terms, described by a system of stochastic differential equations of the form 

dj(x) =j(; t (x))  dA + a~*j(~(x))  +j (Bt (x) )  d~  +j(~(x))  as, A(x)  = x | 1 

(4.1) 

Here each Jt is an injective homomorphism into B ( ~  | F(h)) from a unital 
C*-subalgebra ~r of B(~0), which we assume is invariant under the parity 
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automorphism. Thus the family j = (Jr : t e ~ + )  is a C*-quantum stochastic 
process in the sense of Accardi et al. (1982). Each j (x) ,  x e d ,  is an adapted 
process and 2, fl, fit, and z are maps from d into itself. In order to have 
such a system of stochastic differential equations, it is necessary to assume 
that j is even, in the sense that 

j t ( x  ~) =jr (x )  ~ 

[the consequences of abandoning this simplification are explored in Hud- 
son and Shepperson (1992)]. 

As in the boson theory, unitality, linearity, and self-adjointness of the 
maps j,  require that the structure maps 2, fi, fit, ~ vanish on 1, are linear, 
and satisfy 

2(x*) = 2(x)*, fi(x*) = fit(x)*, z(x*)  = z(x)*,  x e d  (4.2) 

By differentiating the multiplicativity condition j ( xy )  = j ( x ) j ( y ) ,  we obtain 
the structure relations 

2(xy) = 2(x)y + x2(y) + 2(x)2(y) (4.3a) 

fi(xy) = fi(x)y + x~fi(y) + 2(x)~fi(y) (4.3b) 

fit(xy) = fit(x)y? + x f i t (y )  + f i t (x)2(y)r  (4.3c) 

z(xy)  = z(x)y  + x z ( y )  + fit(x)fi(y) (4.3d) 

A further set of structure relations follows from the evenness of j :  

2 ( x r ) = 2 ( x )  ~, f l ( x ~ ) = - f i ( x )  r, f i t ( x ~ ) = - f i ( x ) r ,  z ( x r ) = F ( x )  r (4.4) 

The basic existence theorem for fermion flows, parallel to that for the 
boson case (Evans, 1989), is as follows. 

Theorem. Let 2, fi, fit, ~ be bounded linear maps vanishing on 1 and 
satisfying the structure relations (4.2)-(4.4). Then there exists a unique 
family of injective C*-algebra homomorphisms satisfying (4.1). 

5. PERTURBATION THEORY 

As in the boson case, we s a y j  is inner if it is of f o r m j t ( x  ) = U t x U t  I 
for some even unitary stochastic evolution U; equivalently, if its structure 
maps are of the form 

,~(x)  = w x w - 1  _ x 

# ( x )  = l x  - w x ~ w * !  

f i t ( x )  = x l *  - l * w x ~ w  * 

z(x) --- i[h, x] - �89 - 21*wxTw*l + xl*l )  
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where w, 1, h ~ d ,  w is unitary and even, h is self-adjoint and even, and l is 
odd. More generally, given a unitary stochastic evolution driven by such w, 
l, and h, together with an arbitrary fermion flow j with structure maps 2,/7, 
~t, and z, we may construct a new flow~, called the perturbation o f j  by U, 
as follows. We first define a unitary process u (j) by 

d U  (~) = U(J)((j(w) - 1) dA + dB* j ( l )  - j ( t * w )  d B  + j ( ih  -- �89 ds), 

U(J)(0)  = 1 (5 .1)  

Then 7is  given by 

Y, (x) = ts~ J)j(x) v~ ~)* (5.2) 

Its structure maps are given by 

2(x) = w~(x)w-1 + wxw -~ - x 

~(x) = lx + w~(x) - w(x~ + ,~(x)')w*l 

~*(x) = xl* + ~ +(x)w* - l*w(x~ + ;,(x)~)w* 

"~(x) = T(x) + i[h, x] - �89 - 21*wx~w*l  + x l * l )  

- l*wf l (x)  - f i*(x)w*l  + l*w2(x)~'w*l 

as may be verified by differentiating (5.2) using the quantum It6 formula. 
An existence, uniqueness, and unitarity theorem for solutions of (5.1) in the 
boson case is proved in Evans and Hudson (1990). 

6. FERMION FLOWS AND SUPERSYMMETRY 

In Jaffe et al. (1989) a quantum algebra is defined as a quadruple 
(~ ,  T,/7, (at: t ~ R)), where ~ is a C*-algebra, 7 is a 7/2-grading involution 
of ~', and/7 is an odd 7-derivation of d :  

/7(x ~) = -/7(x) ~', ~(xy )  = f l (x)y  + xT~(y ) ,  x ,  y e a g  

which implies that/7 2 is an even derivation: 

~2(xy) = l~2(x)y + x~=(y) 

and (at: teR) is a one-parameter group of automorphisms of the Banach 
algebra ag (in general not *-automorphisms) of which /7 2 is the infini- 
tesimal generator. Assuming a 1-1 correspondence between such one- 
parameter groups and generators, which will hold, for example, if the latter 
are bounded, we may specify the quantum algebra by the triple (ag, V,/7) 
alone. 
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In order to embed such a structure in a fermion flow (in which there 
will be no conservation term, hence only two independent structure maps 
fi and z), we must find an even linear map ~ satisfying (4.3d). Equivalently, 
the map 

~ :  d x d ~ d ,  qa(x, y)  = [3*(x)fi(y) 

where fit(x) = fi(x*)*, must be a 2-coboundary in the Hochschild cohomol- 
ogy of d with zr itself as bimodule and left and right actions by 
multiplication. In fact ~/, is automatically a 2-cocycle because of the twisted 
derivation property of/~ and it is a coboundary if fl is inner (Hudson, 
1987). Furthermore, every odd 7-derivation fl is inner provided that the 
grading automorphism ~ is also inner (Davies and Lindsay, n.d.). 

Generalizing the notion of supertrace, Jaffe et al. (1989) define a super 
KMS-funct ional  to be a continuous linear map 09: d ~ C  satisfying 
co o fl = 0 and co(xy) = og(y~ae(x)), Vx, y e d .  Such a functional is even and 
satisfies 

oo( x fi( y )  ) = - oJ(~( x ) y  ~') 

Thus it is of interest to know whether such a functional can be constructed 
for a fermion flow. 

In Jaffe et al. (1989) a Chern character is defined for such a functional, 
and shown to be invariant under perturbation of fl by inner 7-deriw.tions: 

fl ~ ~ = fl + ad~q, ad~(x) = qx - x~q 

It is natural to seek to define such a Chern character directly for fermion 
flows, and to prove its invariance under the perturbation theory of Section 
5. 

ACKNOWLEDGMENTS 

Parts of this work were completed while the author visited MIEM, 
Moscow, the Mathematical Institutes of the Slovak Academy of Sciences, 
Bratislava, and the University of L6d~. in autumn 1991. The hospitality of 
these institutions is gratefully acknowledged. 

NOTE ADDED IN PROOF 

Since this work was completed, the following related paper has ap- 
peared. Applebaum, D. B. (1993), Fermionic stochastic differential equa- 
tions and the index of Fredholm operators, Letters in Mathematical  
Physics, 28, 231-237. 
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